Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein.

نویسندگان

  • S Ylä-Herttuala
  • J Luoma
  • H Viita
  • T Hiltunen
  • T Sisto
  • T Nikkari
چکیده

Oxidized low density lipoprotein (LDL) possesses several atherogenic properties. The mechanisms by which LDL becomes oxidized in vivo remain unknown, but previous studies have suggested that 15-lipoxygenase may be one of the factors involved in the initiation of LDL oxidation in the arterial wall. 3 wk after a retrovirus-mediated 15-lipoxygenase gene transfer into iliac arteries of normocholesterolemic rabbits there was a threefold increase in 15-lipoxygenase activity but no signs of LDL oxidation. However, when animals were made moderately hypercholesterolemic by feeding a 0.13% cholesterol diet for 2-3 wk starting from day 4 after the gene transfer, oxidation-specific lipid-protein adducts characteristic of oxidized LDL were detected in 15-lipoxygenase-transduced arteries. Control experiments in which contralateral iliac arteries were transduced with beta-galactosidase-containing retroviruses showed only occasional signs of the presence of oxidation-specific adducts. The results support the hypothesis that products derived from the 15-lipoxygenase activity are involved in the induction of LDL oxidation within the arterial wall, provided that sufficient concentrations of lipoproteins are present in the artery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts.

Oxidatively modified low density lipoprotein (LDL) exhibits several potentially atherogenic properties, and inhibition of LDL oxidation in rabbits decreases the rate of the development of atherosclerotic lesions. In vitro studies have suggested that cellular lipoxygenases may be involved in LDL oxidation, and we have shown previously that 15-lipoxygenase and oxidized LDL are present in rabbit a...

متن کامل

A hyperresponsive 15-lipoxygenase phenotype in rabbit and human populations: relationship to atherosclerosis.

It i s generally recognized that high levels of low density lipoprotein are associated with the development of atherosclerosis A considerable body of evidence has accumulated to indicate that a critical step in atherogenesis, i s oxidation of LDL, and that circumstances that promote oxidation of LDL may constitute a major risk-factor for atherosclerosis (1) A major catalyst of lipoprotein oxida...

متن کامل

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

The Effect of Adiponectin on Osteonectin Gene Expression by Oxidized Low Density Lipoprotein-Treated Vascular Smooth Muscle Cells

Osteonectin is a bone- associated protein involved in vascular calcification. Adiponectin may protect against cardiovascular disease but possible effects on vascular calcification have been poorly studied. The aim of this study was to investigate the modulatory effect of adiponectin on oxidized low density lipoprotein (oxLDL)- induced expression of osteonectin in human aorta vascular smooth mus...

متن کامل

Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3.

Treatment of human artery wall cells with apolipoprotein A-I (apoA-I), but not apoA-II, with an apoA-I peptide mimetic, or with high density lipoprotein (HDL), or paraoxonase, rendered the cells unable to oxidize low density lipoprotein (LDL). Human aortic wall cells were found to contain 12-lipoxygenase (12-LO) protein. Transfection of the cells with antisense to 12-LO (but not sense) eliminat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 1995